阿里云gpu云服务器最新收费标准与优惠价格表
租用阿里云gpu云服务器需要多少钱?不同时期阿里云服务器的租用价格不同,目前阿里云官方活动中主打的gpu云服务器是计算型gn6v、gn7i和gn6i云服务器,购买时长为1个月、6个月和1年自选,其中配置最低的计算型gn6i实例4核15G月付只要3368.00元/1个月起,年付为34221.00元/1年起,配置最高的计算型gn6i实例96核372G月付为19820.00元/1个月起,年付202164.00元/1年起。本文主要为大家介绍目前阿里云gpu云服务器最新收费标准与优惠价格表,以供大家参考和选择。https://upload-images.jianshu.io/upload_images/19316870-bc1f46ffbfdb04f8.png
<div class="image-caption">gpu云服务器图1.png
<h2>一、阿里云gpu云服务器收费标准</h2>
阿里云gpu云服务器包含的实例规格有GPU计算型实例规格族gn7r、GPU计算型实例规格族gn7s、GPU计算型实例规格族gn7e、GPU计算型实例规格族gn7i、GPU计算型实例规格族gn7、GPU虚拟化型实例规格族vgn6i/vgn6i-vws、GPU计算型实例规格族gn6i、GPU计算型实例规格族gn6e、GPU计算型实例规格族gn6v等,收费标准包含按量(小时)、按月和按年收费,详细价格查询:https://www.aliyun.com/product/ecs
小编以及华北2(北京)地域为例来详细说下阿里云gup云服务器CPU内存配置收费标准,包含按量(小时)、标准目录月价、优惠月价、年付月价、3年付月价、5年付月价等信息,以供参考:
<table>
<thead>
<tr>
<th>实例规格</th>
<th>vCPUs</th>
<th>内存(GiB)</th>
<th>按量(小时)</th>
<th>标准目录月价</th>
<th>优惠月价</th>
<th>年付月价</th>
<th>3年付月价</th>
<th>5年付月价</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPU计算型弹性裸金属服务器 ecs.ebmgn7.26xlarge</td>
<td>104</td>
<td>768</td>
<td>252.666666</td>
<td>121280</td>
<td>121280</td>
<td>103098</td>
<td>66708.8</td>
<td>46091.2</td>
</tr>
<tr>
<td>GPU计算型 ecs.gn7-c12g1.3xlarge</td>
<td>12</td>
<td>94</td>
<td>31.583333</td>
<td>15160</td>
<td>15160</td>
<td>12896</td>
<td>8342.8</td>
<td>5765.6</td>
</tr>
<tr>
<td>GPU计算型 ecs.gn7-c13g1.13xlarge</td>
<td>52</td>
<td>378</td>
<td>126.333333</td>
<td>60640</td>
<td>60640</td>
<td>51544</td>
<td>33352</td>
<td>23043.2</td>
</tr>
<tr>
<td>GPU计算型 ecs.gn7-c13g1.26xlarge</td>
<td>104</td>
<td>756</td>
<td>252.666666</td>
<td>121280</td>
<td>121280</td>
<td>103088</td>
<td>66704</td>
<td>46086.4</td>
</tr>
<tr>
<td>GPU计算型弹性裸金属服务器 ecs.ebmgn7e.32xlarge</td>
<td>128</td>
<td>1024</td>
<td>277.933</td>
<td>133408</td>
<td>133408</td>
<td>113396.8</td>
<td>73374.4</td>
<td>50695.04</td>
</tr>
<tr>
<td>GPU计算型弹性裸金属服务器 ecs.ebmgn7i.32xlarge</td>
<td>128</td>
<td>768</td>
<td>59.8125</td>
<td>28710</td>
<td>28710</td>
<td>24403.5</td>
<td>15790.5</td>
<td>10909.8</td>
</tr>
<tr>
<td>GPU计算型 ecs.gn7i-c8g1.2xlarge</td>
<td>8</td>
<td>30</td>
<td>12.710156</td>
<td>6100.88</td>
<td>6100.88</td>
<td>5185.74</td>
<td>3355.48</td>
<td>2318.33</td>
</tr>
<tr>
<td>GPU计算型 ecs.gn7i-c16g1.4xlarge</td>
<td>16</td>
<td>60</td>
<td>13.457812</td>
<td>6459.75</td>
<td>6459.75</td>
<td>5500.79</td>
<td>3557.66</td>
<td>2459.5</td>
</tr>
<tr>
<td>GPU计算型 ecs.gn7i-c32g1.8xlarge</td>
<td>32</td>
<td>188</td>
<td>14.953125</td>
<td>7177.5</td>
<td>7177.5</td>
<td>6100.88</td>
<td>3947.63</td>
<td>2727.45</td>
</tr>
<tr>
<td>GPU计算型 ecs.gn7i-c48g1.12xlarge</td>
<td>48</td>
<td>310</td>
<td>17.944</td>
<td>8613</td>
<td>8613</td>
<td>7321.05</td>
<td>4737.15</td>
<td>3272.94</td>
</tr>
<tr>
<td>GPU计算型 ecs.gn7i-c56g1.14xlarge</td>
<td>56</td>
<td>346</td>
<td>21.533</td>
<td>10335.6</td>
<td>10335.6</td>
<td>8785.26</td>
<td>5684.58</td>
<td>3927.53</td>
</tr>
<tr>
<td>GPU计算型 ecs.gn7i-c32g1.16xlarge</td>
<td>64</td>
<td>376</td>
<td>29.90625</td>
<td>14355</td>
<td>14355</td>
<td>12211.75</td>
<td>7900.05</td>
<td>5459.7</td>
</tr>
<tr>
<td>GPU计算型 ecs.gn7i-c32g1.32xlarge</td>
<td>128</td>
<td>752</td>
<td>59.8125</td>
<td>28710</td>
<td>28710</td>
<td>24403.5</td>
<td>15790.5</td>
<td>10909.8</td>
</tr>
<tr>
<td>轻量级GPU ecs.vgn7i-vws-m4.xlarge</td>
<td>4</td>
<td>30</td>
<td>3.076559</td>
<td>1476.75</td>
<td>1476.75</td>
<td>1255.24</td>
<td>812.21</td>
<td>561.16</td>
</tr>
<tr>
<td>轻量级GPU ecs.vgn7i-vws-m8.2xlarge</td>
<td>10</td>
<td>62</td>
<td>5.568747</td>
<td>2673</td>
<td>2673</td>
<td>2272.05</td>
<td>1470.15</td>
<td>1015.74</td>
</tr>
<tr>
<td>轻量级GPU ecs.vgn7i-vws-m12.3xlarge</td>
<td>14</td>
<td>93</td>
<td>8.060934</td>
<td>3869.25</td>
<td>3869.25</td>
<td>3298.86</td>
<td>2132.89</td>
<td>1475.11</td>
</tr>
<tr>
<td>轻量级GPU ecs.vgn7i-vws-m24.7xlarge</td>
<td>30</td>
<td>186</td>
<td>15.537497</td>
<td>7458</td>
<td>7458</td>
<td>6339.3</td>
<td>4101.9</td>
<td>2834.04</td>
</tr>
<tr>
<td>GPU共享型 ecs.sgn7i-vws-m2.xlarge</td>
<td>4</td>
<td>15.5</td>
<td>1.871086</td>
<td>898.12</td>
<td>898.12</td>
<td>763.4</td>
<td>493.97</td>
<td>341.29</td>
</tr>
<tr>
<td>GPU共享型 ecs.sgn7i-vws-m2s.xlarge</td>
<td>4</td>
<td>8</td>
<td>1.831</td>
<td>878.99</td>
<td>878.99</td>
<td>747.14</td>
<td>483.44</td>
<td>334.02</td>
</tr>
<tr>
<td>GPU共享型 ecs.sgn7i-vws-m4.2xlarge</td>
<td>8</td>
<td>31</td>
<td>3.117701</td>
<td>1496.5</td>
<td>1496.5</td>
<td>1272.02</td>
<td>823.07</td>
<td>568.67</td>
</tr>
<tr>
<td>GPU共享型 ecs.sgn7i-vws-m4s.2xlarge</td>
<td>8</td>
<td>16</td>
<td>3.078</td>
<td>1477.37</td>
<td>1477.37</td>
<td>1265.76</td>
<td>817.35</td>
<td>566.2</td>
</tr>
<tr>
<td>GPU共享型 ecs.sgn7i-vws-m8.4xlarge</td>
<td>16</td>
<td>62</td>
<td>5.61093</td>
<td>2693.25</td>
<td>2693.25</td>
<td>2299.26</td>
<td>1486.09</td>
<td>1028.23</td>
</tr>
<tr>
<td>GPU共享型 ecs.sgn7i-vws-m8s.4xlarge</td>
<td>16</td>
<td>32</td>
<td>5.571</td>
<td>2674.12</td>
<td>2674.12</td>
<td>2283</td>
<td>1475.56</td>
<td>1020.96</td>
</tr>
<tr>
<td>GPU计算型 ecs.gn7e-c16g1.4xlarge</td>
<td>16</td>
<td>125</td>
<td>34.742</td>
<td>16676</td>
<td>16676</td>
<td>14184.6</td>
<td>9176.6</td>
<td>6341.68</td>
</tr>
<tr>
<td>GPU计算型 ecs.gn7e-c16g1.16xlarge</td>
<td>64</td>
<td>500</td>
<td>138.967</td>
<td>66704</td>
<td>66704</td>
<td>56708.4</td>
<td>36692</td>
<td>25352.32</td>
</tr>
<tr>
<td>GPU计算型 ecs.gn7e-c16g1.32xlarge</td>
<td>128</td>
<td>1000</td>
<td>277.933</td>
<td>133408</td>
<td>133408</td>
<td>113396.8</td>
<td>73374.4</td>
<td>50695.04</td>
</tr>
<tr>
<td>ARM GPU计算型 ecs.gn7r-c16g1.4xlarge</td>
<td>16</td>
<td>64</td>
<td>4.8667</td>
<td>2336</td>
<td>2336</td>
<td>2336</td>
<td>2336</td>
<td>2336</td>
</tr>
<tr>
<td>ARM GPU计算型 ecs.gn7r-c16g1.32xlarge</td>
<td>128</td>
<td>512</td>
<td>38.9333</td>
<td>18688</td>
<td>18688</td>
<td>18688</td>
<td>18688</td>
<td>18688</td>
</tr>
<tr>
<td>GPU计算型 ecs.gn6v-c8g1.2xlarge</td>
<td>8</td>
<td>32</td>
<td>26.46</td>
<td>7620</td>
<td>7620</td>
<td>3429</td>
<td>2209.8</td>
<td>2209.8</td>
</tr>
<tr>
<td>GPU计算型 ecs.gn6v-c8g1.8xlarge</td>
<td>32</td>
<td>128</td>
<td>105.84</td>
<td>30480</td>
<td>30480</td>
<td>13726</td>
<td>8844</td>
<td>8844</td>
</tr>
<tr>
<td>GPU计算型 ecs.gn6v-c8g1.16xlarge</td>
<td>64</td>
<td>256</td>
<td>211.68</td>
<td>60960</td>
<td>60960</td>
<td>27432</td>
<td>17678.4</td>
<td>17678.4</td>
</tr>
<tr>
<td>GPU计算型 ecs.gn6v-c10g1.20xlarge</td>
<td>82</td>
<td>336</td>
<td>219.64</td>
<td>63255</td>
<td>63255</td>
<td>28464.75</td>
<td>18343.95</td>
<td>18343.95</td>
</tr>
<tr>
<td>GPU计算型 ecs.gn6i-c4g1.xlarge</td>
<td>4</td>
<td>15</td>
<td>11.63</td>
<td>3348</td>
<td>3348</td>
<td>1674</td>
<td>1071.36</td>
<td>1071.36</td>
</tr>
<tr>
<td>GPU计算型 ecs.gn6i-c8g1.2xlarge</td>
<td>8</td>
<td>31</td>
<td>14</td>
<td>4032</td>
<td>4032</td>
<td>2016</td>
<td>1290.24</td>
<td>1290.24</td>
</tr>
<tr>
<td>GPU计算型 ecs.gn6i-c16g1.4xlarge</td>
<td>16</td>
<td>62</td>
<td>16.41</td>
<td>4725</td>
<td>4725</td>
<td>2362.5</td>
<td>1512</td>
<td>1512</td>
</tr>
<tr>
<td>GPU计算型 ecs.gn6i-c24g1.6xlarge</td>
<td>24</td>
<td>93</td>
<td>17.19</td>
<td>4950</td>
<td>4950</td>
<td>2475</td>
<td>1584</td>
<td>1584</td>
</tr>
<tr>
<td>GPU计算型 ecs.gn6i-c40g1.10xlarge</td>
<td>40</td>
<td>155</td>
<td>14.819</td>
<td>7112.9</td>
<td>7112.9</td>
<td>3556.45</td>
<td>2276.13</td>
<td>2276.13</td>
</tr>
<tr>
<td>GPU计算型 ecs.gn6i-c24g1.12xlarge</td>
<td>48</td>
<td>186</td>
<td>34.38</td>
<td>9900</td>
<td>9900</td>
<td>4950</td>
<td>3168</td>
<td>3168</td>
</tr>
<tr>
<td>GPU计算型 ecs.gn6i-c24g1.24xlarge</td>
<td>96</td>
<td>372</td>
<td>68.75</td>
<td>19800</td>
<td>19800</td>
<td>9900</td>
<td>6336</td>
<td>6336</td>
</tr>
<tr>
<td>GPU计算型弹性裸金属服务器 ecs.ebmgn6i.24xlarge</td>
<td>96</td>
<td>384</td>
<td>68.75</td>
<td>19800</td>
<td>19800</td>
<td>16830</td>
<td>10890</td>
<td>7524</td>
</tr>
<tr>
<td>GPU计算型弹性裸金属服务器 ecs.ebmgn6e.24xlarge</td>
<td>96</td>
<td>768</td>
<td>157.92</td>
<td>75800</td>
<td>75800</td>
<td>75800</td>
<td>75800</td>
<td>75800</td>
</tr>
<tr>
<td>GPU计算型 ecs.gn6e-c12g1.3xlarge</td>
<td>12</td>
<td>92</td>
<td>19.739</td>
<td>9475</td>
<td>9475</td>
<td>9475</td>
<td>9475</td>
<td>9475</td>
</tr>
<tr>
<td>GPU计算型 ecs.gn6e-c12g1.12xlarge</td>
<td>48</td>
<td>368</td>
<td>78.958</td>
<td>37900</td>
<td>37900</td>
<td>37900</td>
<td>37900</td>
<td>37900</td>
</tr>
<tr>
<td>GPU计算型 ecs.gn6e-c12g1.24xlarge</td>
<td>96</td>
<td>736</td>
<td>157.916</td>
<td>75800</td>
<td>75800</td>
<td>75800</td>
<td>75800</td>
<td>75800</td>
</tr>
<tr>
<td>GPU计算型弹性裸金属服务器 ecs.ebmgn6v.24xlarge</td>
<td>96</td>
<td>384</td>
<td>237.125</td>
<td>68292</td>
<td>68292</td>
<td>68292</td>
<td>68292</td>
<td>68292</td>
</tr>
<tr>
<td>轻量级GPU ecs.vgn6i-m4.xlarge</td>
<td>4</td>
<td>23</td>
<td>2.445</td>
<td>1173.65</td>
<td>1173.65</td>
<td>997.6</td>
<td>645.51</td>
<td>445.99</td>
</tr>
<tr>
<td>轻量级GPU ecs.vgn6i-m8.2xlarge</td>
<td>10</td>
<td>46</td>
<td>5.053</td>
<td>2425.56</td>
<td>2425.56</td>
<td>2061.72</td>
<td>1334.06</td>
<td>921.71</td>
</tr>
<tr>
<td>ARM GPU计算型弹性裸金属服务器 ecs.ebmgn6ia.20xlarge</td>
<td>80</td>
<td>256</td>
<td>33.006185</td>
<td>15842.97</td>
<td>15842.97</td>
<td>13466.52</td>
<td>8713.63</td>
<td>6020.33</td>
</tr>
<tr>
<td>GPU计算型 ecs.gn5-c4g1.xlarge</td>
<td>4</td>
<td>30</td>
<td>12.78</td>
<td>3681</td>
<td>3681</td>
<td>3128.85</td>
<td>1914.12</td>
<td>1288.35</td>
</tr>
<tr>
<td>GPU计算型 ecs.gn5-c8g1.2xlarge</td>
<td>8</td>
<td>60</td>
<td>15.39</td>
<td>4433</td>
<td>4433</td>
<td>3778.05</td>
<td>2309.96</td>
<td>1556.35</td>
</tr>
<tr>
<td>GPU计算型 ecs.gn5-c4g1.2xlarge</td>
<td>8</td>
<td>60</td>
<td>25.57</td>
<td>7363</td>
<td>7363</td>
<td>6258.55</td>
<td>3828.76</td>
<td>2577.05</td>
</tr>
<tr>
<td>GPU计算型 ecs.gn5-c8g1.4xlarge</td>
<td>16</td>
<td>120</td>
<td>30.78</td>
<td>8866</td>
<td>8866</td>
<td>7536.1</td>
<td>4610.32</td>
<td>3103.1</td>
</tr>
<tr>
<td>GPU计算型 ecs.gn5-c28g1.7xlarge</td>
<td>28</td>
<td>112</td>
<td>23.88</td>
<td>6877</td>
<td>6877</td>
<td>5845.45</td>
<td>3576.04</td>
<td>2406.95</td>
</tr>
<tr>
<td>GPU计算型 ecs.gn5-c8g1.8xlarge</td>
<td>32</td>
<td>240</td>
<td>61.57</td>
<td>17731</td>
<td>17731</td>
<td>15081.35</td>
<td>9224.92</td>
<td>6210.65</td>
</tr>
<tr>
<td>GPU计算型 ecs.gn5-c8g1.14xlarge</td>
<td>54</td>
<td>480</td>
<td>123.13</td>
<td>35462</td>
<td>35462</td>
<td>30142.7</td>
<td>18440.24</td>
<td>12411.7</td>
</tr>
<tr>
<td>GPU计算型 ecs.gn5-c28g1.14xlarge</td>
<td>56</td>
<td>224</td>
<td>47.75</td>
<td>13753</td>
<td>13753</td>
<td>11690.05</td>
<td>7151.56</td>
<td>4813.55</td>
</tr>
<tr>
<td>GPU计算型 ecs.gn5i-c2g1.large</td>
<td>2</td>
<td>8</td>
<td>8.68</td>
<td>2500</td>
<td>2375</td>
<td>1875</td>
<td>1125</td>
<td>750</td>
</tr>
<tr>
<td>GPU计算型 ecs.gn5i-c4g1.xlarge</td>
<td>4</td>
<td>16</td>
<td>9.69</td>
<td>2790</td>
<td>2650.5</td>
<td>2092.5</td>
<td>1255.5</td>
<td>837</td>
</tr>
<tr>
<td>GPU计算型 ecs.gn5i-c8g1.2xlarge</td>
<td>8</td>
<td>32</td>
<td>11.67</td>
<td>3360</td>
<td>3192</td>
<td>2520</td>
<td>1512</td>
<td>1008</td>
</tr>
<tr>
<td>GPU计算型 ecs.gn5i-c16g1.4xlarge</td>
<td>16</td>
<td>64</td>
<td>15.63</td>
<td>4500</td>
<td>4275</td>
<td>3385</td>
<td>2029.8</td>
<td>1354.8</td>
</tr>
<tr>
<td>GPU计算型 ecs.gn5i-c16g1.8xlarge</td>
<td>32</td>
<td>128</td>
<td>31.25</td>
<td>9000</td>
<td>8550</td>
<td>6750</td>
<td>4050</td>
<td>2700</td>
</tr>
<tr>
<td>GPU计算型 ecs.gn5i-c28g1.14xlarge</td>
<td>56</td>
<td>224</td>
<td>43.06</td>
<td>12400</td>
<td>11780</td>
<td>9300</td>
<td>5580</td>
<td>3720</td>
</tr>
<tr>
<td>轻量级GPU ecs.vgn5i-m1.large</td>
<td>2</td>
<td>6</td>
<td>1.95</td>
<td>562.5</td>
<td>562.5</td>
<td>478.13</td>
<td>309.38</td>
<td>213.75</td>
</tr>
<tr>
<td>轻量级GPU ecs.vgn5i-m2.xlarge</td>
<td>4</td>
<td>12</td>
<td>3.91</td>
<td>1125</td>
<td>1125</td>
<td>956.25</td>
<td>618.75</td>
<td>427.5</td>
</tr>
</tbody>
</table>
<h2>二、阿里云gpu云服务器特惠</h2>
阿里云通过云服务器新人特惠等活动推出GPU新用户专享,首次购买GPU云服务器如下配置包月5折,1-2年4折,限1次,限1台(该优惠不含带宽,系统盘,数据盘):
(1)gn6i(4核15G/8核31G/16核62G/24核93G/40核155G/48核186G/96核372G)
(2)gn6v(8核32G/32核128G/64核256G/82核336G)
(3)gn7i(32核188G)
具体优惠价格如下表所示:
<table>
<thead>
<tr>
<th>gpu云服务器实例</th>
<th>配置</th>
<th>显存</th>
<th>内存</th>
<th>活动价格(1个月)</th>
<th>活动价格(6个月)</th>
<th>活动价格(1年)</th>
</tr>
</thead>
<tbody>
<tr>
<td>计算型 gn6v</td>
<td>8核32G</td>
<td>16G显存V100计算卡</td>
<td>最高配置336G DDR4内存</td>
<td>4592.00元/1个月</td>
<td>27474.00元 /6个月</td>
<td>45791.40元/1年</td>
</tr>
<tr>
<td>计算型 gn6v</td>
<td>32核128G</td>
<td>16G显存V100计算卡</td>
<td>最高配置336G DDR4内存</td>
<td>18295.00元/1个月</td>
<td>109770.00元 /6个月</td>
<td>183084.00元/1年</td>
</tr>
<tr>
<td>计算型 gn6v</td>
<td>64核256G</td>
<td>16G显存V100计算卡</td>
<td>最高配置336G DDR4内存</td>
<td>36596.00元/1个月</td>
<td>219576.00元 /6个月</td>
<td>365964.00元/1年</td>
</tr>
<tr>
<td>计算型 gn7i</td>
<td>32核188G</td>
<td>24G显存A10计算卡</td>
<td>最高配置752G DDR4内存</td>
<td>4326.50元/1个月</td>
<td>25959.00元 /6个月</td>
<td>43269.00元/1年</td>
</tr>
<tr>
<td>计算型 gn6i</td>
<td>4核15G</td>
<td>16G显存T4计算卡</td>
<td>最高配置372G DDR4内存</td>
<td>3368.00元/1个月</td>
<td>20208.00元 /6个月</td>
<td>34221.00元/1年</td>
</tr>
<tr>
<td>计算型 gn6i</td>
<td>8核31G</td>
<td>16G显存T4计算卡</td>
<td>最高配置372G DDR4内存</td>
<td>4039.00元/1个月</td>
<td>24234.00元 /6个月</td>
<td>41197.80元/1年</td>
</tr>
<tr>
<td>计算型 gn6i</td>
<td>16核62G</td>
<td>16G显存T4计算卡</td>
<td>最高配置372G DDR4内存</td>
<td>4732.00元/1个月</td>
<td>28470.00元 /6个月</td>
<td>48399.00元/1年</td>
</tr>
<tr>
<td>计算型 gn6i</td>
<td>24核93G</td>
<td>16G显存T4计算卡</td>
<td>最高配置372G DDR4内存</td>
<td>4957.00元/1个月</td>
<td>29820.00元 /6个月</td>
<td>50561.40元/1年</td>
</tr>
<tr>
<td>计算型 gn6i</td>
<td>48核186G</td>
<td>16G显存T4计算卡</td>
<td>最高配置372G DDR4内存</td>
<td>9920.00元/1个月</td>
<td>59520.00元 /6个月</td>
<td>101184.00元/1年</td>
</tr>
<tr>
<td>计算型 gn6i</td>
<td>96核372G</td>
<td>16G显存T4计算卡</td>
<td>最高配置372G DDR4内存</td>
<td>19820.00元/1个月</td>
<td>118920.00元 /6个月</td>
<td>202164.00元/1年</td>
</tr>
<tr>
<td>计算型 gn6i</td>
<td>40核155G</td>
<td>16G显存T4计算卡</td>
<td>最高配置372G DDR4内存</td>
<td>7132.90元/1个月</td>
<td>42797.42元 /6个月</td>
<td>72755.61元/1年</td>
</tr>
</tbody>
</table>
https://upload-images.jianshu.io/upload_images/19316870-ffec19f2228f3250.png
<h2>三、如何购买更便宜</h2>
以上阿里云gpu云服务器的最新收费标准与优惠价格参考,正式购买之前,用户还可以在阿里云官方领券中心查询是否有最新版的新购优惠券或代金券,如果有的话,推荐先领券后购买更便宜。
页:
[1]